If $\sum\limits_{r = 0}^{25} {\left\{ {^{50}{C_r}.{\,^{50 - r}}{C_{25 - r}}} \right\} = K\left( {^{50}{C_{25}}} \right)} $, then $K$ is equal to
$(25)^2$
$2^{25} -1$
$2^{24}$
$2^{25}$
The sum of all the coefficients in the binomial expansion of ${({x^2} + x - 3)^{319}}$ is
The coefficient of $x^8$ in the expansion of $(x-1) (x- 2) (x-3)...............(x-10)$ is :
Let the coefficient of $x^{\mathrm{r}}$ in the expansion of $(\mathrm{x}+3)^{\mathrm{n}-1}+(\mathrm{x}+3)^{\mathrm{n}-2}(\mathrm{x}+2)+$ $(\mathrm{x}+3)^{\mathrm{n}-3}(\mathrm{x}+2)^2+\ldots \ldots+(\mathrm{x}+2)^{\mathrm{n}-1}$ be $\alpha_{\mathrm{r}}$. If $\sum_{\mathrm{r}=0}^{\mathrm{n}} \alpha_{\mathrm{r}}=\beta^{\mathrm{n}}-\gamma^{\mathrm{n}}, \beta, \gamma \in \mathrm{N}$, then the value of $\beta^2+\gamma^2$ equals..................
The value of $\frac{1}{1 ! 50 !}+\frac{1}{3 ! 48 !}+\frac{1}{5 ! 46 !}+\ldots .+\frac{1}{49 ! 2 !}+\frac{1}{51 ! 1 !}$ is $.............$.
The coefficient of $x^r (0 \le r \le n - 1)$ in the expression :
$(x + 2)^{n-1} + (x + 2)^{n-2}. (x + 1) + (x + 2)^{n-3} . (x + 1)^2; + ...... + (x + 1)^{n-1}$ is :